sábado, 30 de octubre de 2010

SISTEMAS OPERATIVOS

Un Sistema operativo (SO) es un software que actúa de interfaz entre los dispositivos de hardware y los programas de usuario o el usuario mismo para utilizar un computadorEs responsable de gestionar, coordinar las actividades y llevar a cabo el intercambio de los recursos y actúa como intermediario para las aplicaciones que se ejecutan.

Nótese que es un error común muy extendido denominar al conjunto completo de herramientas sistema operativo, pues este, es sólo el núcleo y no necesita de entorno operador para estar operativo y funcional Uno de los más prominentes ejemplos de esta diferencia, es el SO Linux el cual junto a las herramientas GNU, forman las llamadas distribuciones Linux.
Este error de precisión, se debe a la modernización de la informática llevada a cabo a finales de los 80, cuando la filosofía de estructura básica de funcionamiento de los grandes computadores se rediseñó a fin de llevarla a los hogares y facilitar su uso, cambiando el concepto de computador multiusuario, (muchos usuarios al mismo tiempo) por un sistema monousuario (únicamente un usuario al mismo tiempo) más sencillo de gestionar

domingo, 17 de octubre de 2010

PLACA BASE

Tipos de placas base

 

En los ordenadores actuales existen seis tipos básicos de placas base, en función de la CPU: Socket 7, Socket 8, Super 7, Slot 1, Slot 2 y Socket 370. Las placas Socket 7 albergan los procesadores Pentium, K5 de AMD, 6x86 de Cyrix y Winchip C6 de IDT; ya no se venden, pues carecen de las interfaces más utilizadas en la actualidad, como el bus AGP y el puerto USB. Estos dos estándares se incorporan en las placas Super 7, también compatibles Pentium y K6. Las placas Socket 8, muy escasas, albergan los extinguidos procesadores Pentium Pro. Las placas Slot 1 son necesarias para suministrar soporte a los Pentium II/III y Celeron, y suelen disponer del formato ATX, que reorganiza la localización de las tarjetas, para que quepa mayor cantidad en el mismo espacio, y se reduzca el cruce de cables internos. Las placas ATX también necesitan una carcasa especial ATX. Una variante son las placas Slot 2, soporte de la versión Xeon del Pentium II, utilizada en servidores profesionales. Finalmente, las placas Socket 370 alojan una versión especial de Celeron, con las mismas prestaciones que el modelo Slot 1, pero más barato para el fabricante.

El Bus y ranuras de expansión.

El bus de la placa base son los canales por donde circulan los datos que van y vienen del microprocesador. Con la aparición de microprocesadores muy rápidos se desperdiciaba parte de su potencia debido a que el bus hacía de cuello de botella, atascando los datos y haciendo esperar al microprocesador a que estuvieran disponibles los datos. Tras el tradicional bus ISA de 8 MHz han surgido otras alternativas como el Vesa Local Bus y el PCI, que ampliaban el ancho de banda de 16 hasta 32 bits. El resultado es una mejora en el rendimiento al transferir el doble de información (de 16 a 32 bits) en una misma operación. El Vesa Local Bus se quedó rápidamente obsoleto, permaneciendo el bus PCI que es el que se ha estado usando en las placas Pentium.
Las placas más modernas soportan una velocidad del bus que varía entre los 50 y los 100 MHz, en función del procesador utilizado. Otros valores intermedios son 66, 75 o 112 MHz, por ejemplo. La placa también incorpora distintos multiplicadores: 2x, 3x, etc. Valores superiores a 5x comienzan a ser imprescindibles. Estos dos datos se utilizan para soportar todo tipo de procesadores. A mayor número de velocidades del bus y multiplicadores, la placa soportará mayor cantidad de procesadores. Para instalar un Pentium II a 400 MHz, por ejemplo, se configura el bus a 100 MHz y se activa el multiplicador 4x. 100x4=400 MHz. Un Pentium a 200 MHz se configura con un bus a 66 MHz y un multiplicador 3x. 66x3=198 MHz.
Todas las placas soportan diferentes voltajes. No obstante, puesto que se desconoce el voltaje de los futuros procesadores, es bueno adquirir una placa que permita establecer este valor a voluntad, mediante fracciones de 0.1 voltios.

Una placa base actual debe disponer de una ranura AGP para la tarjeta gráfica, cuatro o cinco PCI y, al menos, dos ISA para las tarjetas viejas, como modems internos, tarjetas de sonido, placas SCSI, etc. Los puertos exteriores no deben bajar de dos entradas USB, dos COM, y varios puertos en paralelo.

AGP

Este nuevo bus es capaz de paliar el cuello de botella que existe entre el microprocesador y la tarjeta gráfica.
Hemos de tener en cuenta que el actual bus PCI va a 33 MHz. (132 Mb/s máximo), una velocidad bastante inferior a la del microprocesador. AGP incorpora un nuevo sistema de transferencia de datos a más velocidad, gracias al uso  de la memoria principal del PC. Las placas base que lo soportan (sólo contienen 1 slot de este tipo) son las de Pentium II con chipset de Intel 440LX AGPset y 440BX. Ya están apareciendo las placas base Super 7, con el fin de hacer el estándar compatible con procesadores que van conectados con el zócalo Socket 7, tales como los Pentium, Pentium MMX y los procesadores de AMD y Cyrix.
Para que el sistema funcione, se necesita una tarjeta gráfica compatible con el slot AGP, por lo que una tarjeta PCI no nos valdrá. En este caso varía la velocidad. Existen tarjetas 1x, velocidad estándar, es decir, 66 Mhz (264 Mb/s máximo). Las nuevas AGP llegan con 2x a 133 MHz (dobla al anterior, y alcanza de máxima 528 Mb/s); y un último tipo de 4x a 400 Mhz (ya que la velocidad interna se aumenta a 100 Mhz). Aunque el chipset BX de Intel en teoría lo soporta, no saldrán tarjetas de este tipo hasta principios de 1.999.
El bus AGP permite cargar texturas en la RAM principal, es decir, ya no se limita a la capacidad de la memoria de la tarjeta gráfica; y además se apreciará de un aumento de imágenes por segundo, mayor calidad gráfica y la reproducción de vídeo más nítida. En teoría, un juego de 30 fps con una PCI alcanzaría con una AGP 240 fps. Microsoft dice que su API DirectDraw incluido en DirectX 5.0 es compatible con esta tecnología.

PCI

La tecnología PCI fue desarrollada por Intel para su microprocesador Pentium, pero se extendió hasta las placas para 486 (sobre todo las de la última generación que soportaban 486DX4). El funcionamiento es similar al del bus VESA. La diferencia es que todos los slots de expansión se conectan al microprocesador indirectamente a través de una circuitería que controla las transferencias. Este diseño permite conectar (teóricamente) hasta 10 placas de expansión en PCI.

MONITOR CRT

El CRT a color

Es una pantalla basada en un tubo de rayos catódicos diseñada para
funcionar con una tarjeta vídeo, que produce texto o imagen de gráficas a
color. Un monitor color tiene una pantalla revestida internamente con
trifósforo rojo, verde y azul dispuesto en bandas o configuraciones. Para
iluminar el trifósforo y generar un punto de color, este monitor suele incluir
también tres cañones de electrones, en este caso uno para cada color
primario. Para crear colores como el amarillo, el rosado o el anaranjado, los
tres colores primarios se mezclan.
-Espectro luminoso
Por medio de la descomposición de la luz se pueden obtener imágenes a
través de los colores básicos como son el rojo, verde y azul.
-Triple cañón electrónico
Con una triada de puntos se forma un píxel y con un conjunto de píxeles se
forma una imagen.
-Los píxeles
Mediante la combinación de estos puntos se forma la imagen, estos todo el
tiempo no están encendidos, estos se encienden en una secuencia.

MONITOR LCD

MONITOR LCD
Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid Crystal Display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.

Características

Cada píxel de un LCD típicamente consiste de una capa de moléculas alineadas entre dos electrodos transparentes, y dos filtros de polarización, los ejes de transmisión de cada uno que están (en la mayoría de los casos) perpendiculares entre sí. Sin cristal líquido entre el filtro polarizante, la luz que pasa por el primer filtro sería bloqueada por el segundo (cruzando) polarizador.
La superficie de los electrodos que están en contacto con los materiales de cristal líquido es tratada a fin de ajustar las moléculas de cristal líquido en una dirección en particular. Este tratamiento suele ser normalmente aplicable consiste en una fina capa de polímero que es unidireccionalmente frotada utilizando, por ejemplo, un paño. La dirección de la alineación de cristal líquido se define por la dirección de frotación.

Resolución

Las dimensiones horizontal y vertical son expresadas en píxeles. Las pantallas HD tienen una resolucion nativa de 1366 x 768 pixeles (720p) y la resolucion nativa en las Full HD es de 1920 x 1080 pixeles(1080p)

Ancho de punto

La distancia entre los centros de dos pixeles adyacentes. Cuanto menor sea el ancho de punto, tanto menor granularidad tendrá la imagen. El ancho de punto puede ser el mismo en sentido vertical y horizontal, o bien diferente (menos frecuente).

Tamaño

El tamaño de un panel LCD se mide a lo largo de su diagonal, generalmente expresado en pulgadas (coloquialmente llamada área de visualización activa).

Tiempo de respuesta

Es el tiempo que demora un píxel en cambiar de un color a otro

Tipo de matriz

Activa, pasiva y reactiva.

Ángulo de visión

Es el máximo ángulo en el que un usuario puede mirar el LCD, es estando desplazado de su centro, sin que se pierda calidad de imagen. Las nuevas pantallas vienen con un angulo de vision de 178 grados

IMPRESORA LASER, DE MATRIZ DE PUNTO, Y DE INYECCCION DE TINTA

IMPRESORA LASER
funciona gracias al fenómeno de polarización y atracción de la carga. Esto significa que durante el proceso de impresión, ciertos átomos se atraen y se repelen (entre otros procesos), para posibilitar que el usuario obtenga su hoja impresa.
El proceso comienza cuando el Sistema Operativo, envía señales a la impresora, que son decodificadas por el procesador de la impresora. Este ordena al láser prenderse y apagarse.
El haz de luz del láser, apunta a un espejo poligonal giratorio que se encarga de abrir el haz de luz. Esto genera una línea que se refleja en un espejo cóncavo – convexo que produce una línea recta de luz de láser.
La línea recta de luz de láser invierte la carga en ciertos puntos de un tambor donde debería ir cada punto en la hoja, o sea, el dibujo a imprimir. Este tambor es llamado Tambor Fotorreceptor o Cartucho Orgánico Fotoconductivo (OPC).
El OPC gira poco a poco, y se va invirtiendo la carga línea por línea, solo de los puntos del dibujo. De esta forma, el tambor se carga completamente.
Al finalizar este proceso, queda en el OPC en positivo el dibujo y en negativo la parte blanca. (O viceversa, pero la parte del dibujo deberá tener la misma carga que el papel)
Al mismo momento, un sistema de engranajes mueve al papel hacia el interior de la impresora, conduciéndolo hasta un alambre llamado Corotrón o Alambre De Corona. Este alambre transfiere a la hoja una carga eléctrica estática. La carga en el papel deberá ser de mayor potencial que la del OPC
Una vez que terminó el traspaso del dibujo al OPC, unas partículas llamadas TONER se mezclan con el revelador y como ambas son de carga distinta se ven atraídas entre ellas. El revelador es de un material metálico(pueden ser de pedernal, nickel o ferrita)esto sirve para que el revelador con el toner, se queden adheridos al "Rodillo de Revelado", que es un imán.

Matriz De Puntos
La impresora de matriz de agujas tiene este nombre debido a que tiene un cabezal móvil con un conjunto de agujas separadas en una o varias columnas. Por lo que se explicará a continuación, esta es una impresora de impacto.
El procesador de la impresora recibe la información de la tabla de bitmaps y se dedica a calcular el camino más eficiente, línea por línea, para el viaje del cabezal. A partir de esto envía las señales al cabezal y al rodillo para realizar la impresión.
Cada aguja termina en una pieza plástica de forma de un sector circular que a su vez tiene un imán cilíndrico. El imán se desplaza por un alambre que lo rodea, si se hace circular energía eléctrica por este alambre se genera un campo magnético que atrae el imán. El desplazamiento del imán hace que la pieza plástica impacte contra la cinta de tinta y se marque el papel. Cuando no circula más corriente por el electroimán, este deja de ser atraído por el campo magnético y el resorte hace que la aguja vuelva a la posición de reposo.
A pesar de ser ruidosas, las impresoras de matriz de puntos se siguen usando debido a que resulta económico para realizar varias copias en la facturación en todo tipo de negocios. Por otra parte, el mantenimiento de estas impresoras es muy económico comparado con las demás tecnologías
INYECCION DE TINTA
Las impresoras de chorro o inyección de tinta están clasificadas entre las impresoras matriciales y las láser. Éstas poseen la alta resolución de estas últimas, con la ventaja de ser mas compactas y la desventaja de tener, en la gran mayoría, menor velocidad. Al igual que dichas impresoras, la ventaja de las impresoras de chorro de tinta es que no producen ruido como las impresoras de impacto. Una ventaja con respecto a las impresoras de matriz es que, aunque el sistema de impresión es bastante similar, hablando del movimiento del cabezal de impresión, es que depositan la tinta en puntos más pequeños, adquiriendo, así, mejor resolución.
El funcionamiento de estas es relativamente simple. Depositan pequeñas gotas de tinta sobre el papel. Estas gotas son depositadas por el cabezal de impresión, que contiene una matriz de orificios o micro conductos, que son las bocas por las que circula la tinta del cabezal al papel. Cuando llega el momento de imprimir, el microprocesador de este periférico lee carácter por carácter que es lo que debe imprimir, busca en la memoria cual es la matriz que corresponde a dicha letra, sistema BITMAP. Esta información es enviada al cabezal para saber por qué conductos debe ser enviada tinta al papel, y porque orificios no. En caso de que se quiera imprimir un gráfico, el sistema de impresión a utilizar sería el Outline.

UNIDAD DE DVD

El DVD ( dividi en Argentina, o deuvedé en España, siendo dividi desaconsejada según la Real Academia Española ), cuyas siglas corresponden a Digital Versatile Disc y a Disco Versátil Digital (su traducción literal al castellano) y no a "Vídeo Disco Digital" (del inglés "Digital Video Disc") como erróneamente lo llamaron algunos , es un dispositivo de almacenamiento óptico cuyo estándar surgió en 1995.

Unidad de DVD: el nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y borrar las veces que se quiera). También difieren en la capacidad de almacenamiento de cada uno de los tipos.

Un DVD-RW (Menos Regrabable) es un DVD regrabable en el que se puede grabar y borrar la información varias veces. La capacidad estándar es de 4,7 GB.
Fue creado por Pioneer en noviembre de 1999 y es el formato contrapuesto al DVD+RW, apoyado además por Panasonic, Toshiba, Hitachi, NEC, Samsung, Sharp, Apple Computer y el DVD Forum.

El DVD-RW es análogo al CD-RW, por lo que permite que su información sea grabada, borrada y regrabada varias veces, esto es una ventaja respecto al DVD-R, ya que se puede utilizar como un diskette de 4,7 GB.

UNIDAD DE CD

CD-ROM
siglas del inglés Compact Disc - Read Only Memory), es un pre-prensado disco compacto que contiene los datos de acceso, pero sin permisos de escritura, un equipo de almacenamiento y reproducción de música, el CD-ROM estándar fue establecido en 1985 por Sony y Philips. Pertenece a un conjunto de libros de colores conocido como Rainbow Books que contiene las especificaciones técnicas para todos los formatos de discos compactos.

La Unidad de CD-ROM debe considerarse obligatoria en cualquier computador que se ensamble o se construya actualmente, porque la mayoría del software se distribuye en CD-ROM. Algunas de estas unidades leen CD-ROM y graban sobre los discos compactos de una sola grabada (CD-RW). Estas unidades se llaman quemadores, ya que funcionan con un láser que "quema" la superficie del disco para grabar la información.

Actualmente, aunque aún se utilizan, están empezando a caer en desuso desde que empezaron a ser sustituidos por unidades de DVD. Esto se debe principalmente a las mayores posibilidades de información, ya que un DVD-ROM supera en capacidad a un CD-ROM.

CD- RW
Un disco compacto regrabable, conocido popularmente como CD-RW (sigla del inglés de Compact Disc ReWritable) es un soporte digital óptico utilizado para almacenar cualquier tipo de información. Este tipo de CD puede ser grabado múltiples veces, ya que permite que los datos almacenados sean borrados. Fue desarrollado conjuntamente en 1980 por las empresas Sony y Philips, y comenzó a comercializarse en 1982. Hoy en día tecnologías como el DVD han desplazado en parte esta forma de almacenamiento, aunque su uso sigue vigente.

En el disco CD-RW la capa que contiene la información está formada por una aleación cristalina de plata, indio, antimonio y telurio que presenta una interesante cualidad: si se calienta hasta cierta temperatura, cuando se enfría deviene cristalino, pero si al calentarse se alcanza una temperatura aún más elevada, cuando se enfría queda con estructura amorfa. La superficie cristalina permite que la luz se refleje bien en la zona reflectante mientras que las zonas con estructura amorfa absorben la luz. Por ello el CD-RW utiliza tres tipos de luz:
  • Láser de escritura: Se usa para escribir. Calienta pequeñas zonas de la superficie para que el material se torne amorfo.
  • Láser de borrado: Se usa para borrar. Tiene una intensidad menor que el de escritura con lo que se consigue el estado cristalino.
  • Láser de lectura: Se usa para leer. Tiene menor intensidad que el de borrado. Se refleja en zonas cristalinas y se dispersa en las amorfas.

DISCO DURO

DISCO DURO
un disco duro o disco rígido (en inglés Hard Disk Drive, HDD) es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.

Estructura física

Componentes de un disco duro. De izquierda a derecha, fila superior: tapa, carcasa, plato, eje; fila inferior: espuma aislante, circuito impreso de control, cabezal de lectura / escritura, actuador e imán, tornillos.
Interior de un disco duro; se aprecia la superfície de un plato y el cabezal de lectura/escritura retraído, a la izquierda.
Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.

Cada plato posee dos caras, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector de más abajo, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).

Tipos de conexión
Si hablamos de disco duro podemos citar los distintos tipos de conexión que poseen los mismos con la placa base, es decir pueden ser SATA, IDE, SCSI o SAS:
  • IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta aproximadamente el 2004, el estándar principal por su versatilidad y asequibilidad. Son planos, anchos y alargados.
  • SCSI: Son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.
  • SATA (Serial ATA): El más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Existen tres versiones, SATA 1 con velocidad de transferencia de hasta 150 MB/s (hoy día descatalogado), SATA 2 de hasta 300 MB/s, el más extendido en la actualidad; y por último SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado. Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir conexión en caliente.
,

MEMORIAS ROM ( PROM , EPROM , EEPROM)

PROM
es el acrónimo de Programable Read-Only Memory (ROM programable). Es una memoria digital donde el valor de cada bit depende del estado de un fusible (o antifusible), que puede ser quemado una sola vez. Por esto la memoria puede ser programada (pueden ser escritos los datos) una sola vez a través de un dispositivo especial, un programador PROM. Estas memorias son utilizadas para grabar datos permanentes en cantidades menores a las ROMs, o cuando los datos deben cambiar en muchos o todos los casos.
Pequeñas PROM han venido utilizándose como generadores de funciones, normalmente en conjunción con un multiplexor. A veces se preferían a las ROM porque son bipolares, habitualmente Schottky, consiguiendo mayores velocidades.

EPROM y EEPROM

Wen Tsing Chow y otros ingenieros de la División Arma continuaron con este suceso diseñando la primera Memoria de Sólo Lectura No destruible' (Non-Destructive Read-Only Memory, NDRO) para aplicarlo a misiles guiados, fundamentado en una base de doble abertura magnética. Estas memorias, diseñadas originalmente para mantener constantes de objetivos, fueron utilizadas para sistemas de armas de MBIs y MMRBMs.

La principal motivación para este invento fue que la Fuerza Aérea Estadounidense necesitaba reducir los costes de la fabricación de plaquetas de objetivos basadas en PROMs que necesitaban cambios constantes a medida que llegaba nueva información sobre objetivos del bloque de naciones comunistas. Como estas memorias son borrables, programables y re-programables, constituyen la primera implementación de una producción de memorias EPROM y EEPROM, de fabricación anterior al 1963.
Debe observarse que los términos modernos de estos dispositivos, PROM, EPROM y EEPROM, no fueron creados hasta un tiempo después de que las aplicaciones de misiles nucleares guiados hayan estado operacionales. Las implementaciones originales de Arma se refieren a las PROMs como "matriz de almacenamiento de constantes"; y a las EPROMs y EEPROMs simplemente eran denominadas "memorias NDRO".

TIPOS DE MEMORIA RAM ( LA CANTIDAD DE DATOS EN BITS...)


SDR SDRAM
Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Fue utilizada en los Pentium II y en los Pentium III , así como en los AMD K6, AMD Athlon K7 y Duron. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. El nombre correcto es SDR SDRAM ya que ambas (tanto la SDR como la DDR) son memorias síncronas dinámicas. Los tipos disponibles son:
  • PC100: SDR SDRAM, funciona a un máx. de 100 MHz
  • PC133: SDR SDRAM, funciona a un máx. de 133 MHz
DDR SDRAM
Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos. Los tipos disponibles son:
  • PC2100 o DDR 266: funciona a un máx de 133 MHz.
  • PC2700 o DDR 333: funciona a un máx de 166 MHz.
  • PC3200 o DDR 400: funciona a un máx de 200 MHz.
DDR2 SDRAM
Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:
  • PC2-4200 o DDR2-533: funciona a un máx de 533 MHz.
  • PC2-5300 o DDR2-667: funciona a un máx de 667 MHz.
  • PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
  • PC2-8600 o DDR2-1066: funciona a un máx de 1066 MHz.

SDRAM DDR2.
Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:
  • PC2-4200 o DDR2-533: funciona a un máx de 533 MHz.
  • PC2-5300 o DDR2-667: funciona a un máx de 667 MHz.
  • PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
  • PC2-8600 o DDR2-1066: funciona a un máx de 1066 MHz.
DDR3 SDRAM
Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:
  • PC3-8600 o DDR3-1066: funciona a un máx de 1066 MHz.
  • PC3-10600 o DDR3-1333: funciona a un máx de 1333 MHz.
  • PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.
RDRAM (Rambus DRAM)
Memoria de gama alta basada en un protocolo propietario creado por la empresa Rambus, lo cual obliga a sus compradores a pagar regalías en concepto de uso. Esto ha hecho que el mercado se decante por la tecnología DDR, libre de patentes, excepto algunos servidores de grandes prestaciones (Cray) y la consola PlayStation 3. La RDRAM se presenta en módulos RIMM de 184 contactos.
  •  
  • FPM-RAM (Fast Page Mode RAM)
Inspirado en técnicas como el "Burst Mode" usado en procesadores como el Intel 486, se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primera vez no sería necesario decir el número de la calle únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.
  • EDO-RAM (Extended Data Output RAM)
Lanzada en 1995 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el buffer de salida hasta que comienza el próximo ciclo de lectura.
  • BEDO-RAM (Burst Extended Data Output RAM)
Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a más de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.
SLDRAM
funcionara a velocidades de 400 mhz alcanzando en modo doble 800 mhz, con tranferencias de 800Mb/s, llegando a alcanzar 1,6Ghz, 3,2 Ghz en modo doble de hasta 4Gb de transferencia. se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos. su problema, al igual que en la DDR SDRAM es la falta de apoyo por parte de intel. siemens y micron van a empezar a construir memorias SLDRAM
ESRAM
este tipo de memoria es apoyada por alpha, que piensa utilizarlaen sus futuros sistemas. funciona a 133 MHZ y alcanza tranferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHZ hasta 3.2 GB/S.
SGRAM
es un tipo de SDRAM para adaptadores graficos. agrega mejoras como bit masking( escribir en un bit especifico sin afectar a otro ) y block write ( rellenar un bloque de memoria con un unico color).
VRAM
Es una memoria de os puertos, significandolo se puede leer y escribir al mismo tiempo. la COPITA ( significa que la memoria se puede escribir y leer pero no simultaneamente; tiene que ir una forma a la vez). esta memoria se utiliza en las tergetas aceleradoras de video y se utiliza lo mas conmunmente posible para almacenar los valores de los pixeles en la pantalla para restaurar propositos.
WRAM
Permite leer y escribir informacion de la memoria al mismo tiempo, como en la VRAM, pero esta optimizada para la presentacion de un gran numero de colores y para altas resoluciones de pantalla. es un poco mas economica que la anterior